
PyLinearSolver
Release 0.1.1

Aug 03, 2020

Contents:

1 About the Package 1

2 Installation 3
2.1 Dependencies . 3
2.2 PyLinearSolver . 3

3 PyLinearSolver packages 5
3.1 IterativeSolvers . 5

4 Examples 13
4.1 Iterative Solvers . 13

5 Indices and tables 15

Python Module Index 17

Index 19

i

ii

CHAPTER 1

About the Package

PyLinearSolver is a python iterface for many well-known linear solvers packages written in different languages like
C, C++, julia, etc. . . The package uses the existing implementation from the original source and build a wrapper layer
for a python development.

NOTE All rights are preserved to the authers and developers of the original packages.

1

PyLinearSolver, Release 0.1.1

2 Chapter 1. About the Package

CHAPTER 2

Installation

2.1 Dependencies

To work with PyLinearSolver packages, you need to install the dependencies for them.

Iterative Solvers

• Install Julia

• It is preferable to install a custom python version using pyenv due to an issue with PyJulia.

2.2 PyLinearSolver

Simply you need to call the following command:

pip install PyLinearSolver

NOTE In case of working with Iterative Solvers, you need to install the dependencies for PyJulia through the follow-
ing:

import julia
julia.install()

3

https://julialang.org/downloads/
https://github.com/pyenv/pyenv
https://pyjulia.readthedocs.io/en/latest/troubleshooting.html#ultimate-fix-build-your-own-python

PyLinearSolver, Release 0.1.1

4 Chapter 2. Installation

CHAPTER 3

PyLinearSolver packages

3.1 IterativeSolvers

PyLinearSolver.IterativeSolvers.bicgstabl(A, b, l, **kwargs)
The function is a wrapper for the julia implementation of BiCGStab(l) solver in IterativeSolver.jl package.
BiCGStab(l) solves the problem 𝐴𝑥 = 𝑏 approximately for 𝑥 where 𝐴 is a general, linear operator and 𝑏 the
right-hand side vector. The methods combines BiCG with 𝑙 GMRES iterations, resulting in a short-reccurence
iteration. As a result the memory is fixed as well as the computational costs per iteration.

Arguments

• A: linear operator;

• b: right hand side (vector);

• l::Int = 2: Number of GMRES steps.

Keywords

• max_mv_products::Int = size(A, 2): maximum number of matrix vector products.

For BiCGStab(l) this is a less dubious term than “number of iterations”;

• Pl = Identity(): left preconditioner of the method;

• tol::Real = sqrt(eps(real(eltype(b)))): tolerance for stopping condition |𝑟𝑘|/|𝑟0|𝑡𝑜𝑙. Note that (1) the true
residual norm is never computed during the iterations, only an approximation; and (2) if a preconditioner
is given, the stopping condition is based on the preconditioned residual.

Output

if log is false

• x: approximate solution.

if log is true

• x: approximate solution;

• history: convergence history.

5

PyLinearSolver, Release 0.1.1

PyLinearSolver.IterativeSolvers.cg(A, b, **kwargs)
The function is a wrapper for the julia implementation of Conjugate Gradients solver in IterativeSolver.jl pack-
age. Conjugate Gradients solves 𝐴𝑥 = 𝑏 approximately for 𝑥 where 𝐴 is a symmetric, positive-definite linear
operator and 𝑏 the right-hand side vector. The method uses short recurrences and therefore has fixed memory
costs and fixed computational costs per iteration.

Arguments

• A: linear operator

• b: right-hand side.

Keywords

• statevars::CGStateVariables: Has 3 arrays similar to x to hold intermediate results.

• initially_zero::Bool: If true assumes that iszero(x) so that one matrix-vector product can be saved when
computing the initial residual vector

• Pl = Identity(): left preconditioner of the method. Should be symmetric, positive-definite like A

• tol::Real = sqrt(eps(real(eltype(b)))): tolerance for stopping condition |𝑟𝑘|/|𝑟0|𝑡𝑜𝑙

• maxiter::Int = size(A,2): maximum number of iterations

• verbose::Bool = false: print method information

• log::Bool = false: keep track of the residual norm in each iteration.

Output

if log is false

• x: approximated solution.

if log is true

• x: approximated solution.

• ch: convergence history.

ConvergenceHistory keys

• tol => ::Real: stopping tolerance.

• resnom => ::Vector: residual norm at each iteration.

PyLinearSolver.IterativeSolvers.chebyshev(A, b, lamda_min, lamda_max, **kwargs)
The function is a wrapper for the julia implementation of Chebyshev Iteration solver in IterativeSolver.jl pack-
age. Chebyshev iteration solves the problem 𝐴𝑥 = 𝑏 approximately for 𝑥 where 𝐴 is a symmetric, definite
linear operator and b the right-hand side vector. The methods assumes the interval [𝑚𝑖𝑛,𝑚𝑎𝑥] containing all
eigenvalues of 𝐴 is known, so that 𝑥 can be iteratively constructed via a Chebyshev polynomial with zeros in this
interval. This polynomial ultimately acts as a filter that removes components in the direction of the eigenvectors
from the initial residual. The main advantage with respect to Conjugate Gradients is that BLAS1 operations
such as inner products are avoided.

Arguments

• A: linear operator;

• b: right-hand side;

• 𝜆min::Real: lower bound for the real eigenvalues

• 𝜆max::Real: upper bound for the real eigenvalues

Keywords

6 Chapter 3. PyLinearSolver packages

PyLinearSolver, Release 0.1.1

• initially_zero::Bool = false: if true assumes that iszero(x) so that one matrix-vector product can be saved
when computing the initial residual vector;

• tol: tolerance for stopping condition |𝑟𝑘|/|𝑟0|𝑡𝑜𝑙.

• maxiter::Int = size(A, 2): maximum number of inner iterations of GMRES;

• Pl = Identity(): left preconditioner;

• log::Bool = false: keep track of the residual norm in each iteration;

• verbose::Bool = false: print convergence information during the iterations.

Output

if log is false

• x: approximate solution.

if log is true

• x: approximate solution;

• history: convergence history.

PyLinearSolver.IterativeSolvers.gauss_seidel(A, b, **kwargs)
The function is a wrapper for the julia implementation of Gauss-Seidel solver in IterativeSolver.jl package.

Keywords

• maxiter::Int = 10: maximum number of iterations.

PyLinearSolver.IterativeSolvers.gmres(A, b, **kwargs)
The function is a wrapper for the julia implementation of Restarted GMRES solver in IterativeSolver.jl package.
GMRES solves the problem 𝐴𝑥 = 𝑏 approximately for 𝑥 where 𝐴 is a general, linear operator and 𝑏 the right-
hand side vector. The method is optimal in the sense that it selects the solution with minimal residual from a
Krylov subspace, but the price of optimality is increasing storage and computation effort per iteration. Restarts
are necessary to fix these costs.

Arguments

• A: linear operator;

• b: right-hand side.

Keywords

• initially_zero::Bool: If true assumes that iszero(x) so that one matrix-vector product can be saved when
computing the initial residual vector;

• tol: relative tolerance;

• restart::Int = min(20, size(A, 2)): restarts GMRES after specified number of iterations;

• maxiter::Int = size(A, 2): maximum number of inner iterations of GMRES;

• Pl: left preconditioner;

• Pr: right preconditioner;

• log::Bool: keep track of the residual norm in each iteration;

• verbose::Bool: print convergence information during the iterations.

Output

if log is false

• x: approximate solution.

3.1. IterativeSolvers 7

PyLinearSolver, Release 0.1.1

if log is true

• x: approximate solution;

• history: convergence history.

PyLinearSolver.IterativeSolvers.idrs(A, b, s=8, **kwargs)
The function is a wrapper for the julia implementation of IDR(s) solver in IterativeSolver.jl package. The
Induced Dimension Reduction method is a family of simple and fast Krylov subspace algorithms for solving
large nonsymmetric linear systems. The idea behind the IDR(s) variant is to generate residuals that are in the
nested subspaces of shrinking dimensions.

Arguments

• A: linear operator;

• b: right-hand side.

Keywords

• s::Integer = 8: dimension of the shadow space;

• tol: relative tolerance;

• maxiter::Int = size(A, 2): maximum number of iterations;

• log::Bool: keep track of the residual norm in each iteration;

• verbose::Bool: print convergence information during the iterations.

Output

if log is false

• x: approximate solution.

if log is true

• x: approximate solution;

• history: convergence history.

PyLinearSolver.IterativeSolvers.jacobi(A, b, **kwargs)
The function is a wrapper for the julia implementation of Jacobi solver in IterativeSolver.jl package.

Keywords

• maxiter::Int = 10: maximum number of iterations.

PyLinearSolver.IterativeSolvers.lsmr(A, b, **kwrags)
The function is a wrapper for the julia implementation of Least-squares minimal residual solver in Iterative-
Solver.jl package. Minimizes 𝐴𝑥𝑏2 + 𝑥2 in the Euclidean norm. If multiple solutions exists the minimum norm
solution is returned. The method is based on the Golub-Kahan bidiagonalization process. It is algebraically
equivalent to applying MINRES to the normal equations (𝐴𝐴+2 𝐼)𝑥 = 𝐴𝑏, but has better numerical properties,
especially if 𝐴 is ill-conditioned.

Arguments

• A: linear operator.

• b: right-hand side.

Keywords

• 𝜆::Number = 0: lambda.

8 Chapter 3. PyLinearSolver packages

PyLinearSolver, Release 0.1.1

• atol::Number = 1e-6, btol::Number = 1e-6: stopping tolerances. If both are 1.0e-9 (say), the final residual
norm should be accurate to about 9 digits. (The final x will usually have fewer correct digits, depending
on cond(A) and the size of damp).

• conlim::Number = 1e8: stopping tolerance. lsmr terminates if an estimate of cond(A) exceeds conlim. For
compatible systems Ax = b, conlim could be as large as 1.0e+12 (say). For least-squares problems, conlim
should be less than 1.0e+8. Maximum precision can be obtained by setting

• atol = btol = conlim = zero, but the number of iterations may then be excessive.

• maxiter::Int = maximum(size(A)): maximum number of iterations.

• log::Bool: keep track of the residual norm in each iteration;

• verbose::Bool: print convergence information during the iterations.

Output

if log is false

• x: approximated solution.

if log is true

• x: approximated solution.

• ch: convergence history.

ConvergenceHistory keys

• atol => ::Real: atol stopping tolerance.

• btol => ::Real: btol stopping tolerance.

• ctol => ::Real: ctol stopping tolerance.

• anorm => ::Real: anorm.

• rnorm => ::Real: rnorm.

• cnorm => ::Real: cnorm.

• resnom => ::Vector: residual norm at each iteration.

PyLinearSolver.IterativeSolvers.lsqr(A, b, **kwrags)
The function is a wrapper for the julia implementation of LSQR solver in IterativeSolver.jl package. Minimizes
𝐴𝑥𝑏2 + 𝑑𝑎𝑚𝑝𝑥2 in the Euclidean norm. If multiple solutions exists returns the minimal norm solution. The
method is based on the Golub-Kahan bidiagonalization process. It is algebraically equivalent to applying CG to
the normal equations (𝐴𝐴+2 𝐼)𝑥 = 𝐴𝑏 but has better numerical properties, especially if 𝐴 is ill-conditioned.

Arguments

• A: linear operator;

• b: right-hand side.

Keywords

• damp::Number = 0: damping parameter.

• atol::Number = 1e-6, btol::Number = 1e-6: stopping tolerances. If both are 1.0e-9 (say), the final residual
norm should be accurate to about 9 digits. (The final x will usually have fewer correct digits, depending
on cond(A) and the size of damp).

• conlim::Number = 1e8: stopping tolerance. lsmr terminates if an estimate of cond(A) exceeds conlim.
For compatible systems 𝐴𝑥 = 𝑏, conlim could be as large as 1.0e+12 (say). For least-squares problems,

3.1. IterativeSolvers 9

PyLinearSolver, Release 0.1.1

conlim should be less than 1.0e+8. Maximum precision can be obtained by setting atol = btol = conlim =
zero, but the number of iterations may then be excessive.

• maxiter::Int = maximum(size(A)): maximum number of iterations.

• verbose::Bool = false: print method information.

• log::Bool = false: output an extra element of type ConvergenceHistory containing extra information of the
method execution.

Output

if log is false

• x: approximated solution.

if log is true

• x: approximated solution.

• ch: convergence history.

ConvergenceHistory keys

• atol => ::Real: atol stopping tolerance.

• btol => ::Real: btol stopping tolerance.

• ctol => ::Real: ctol stopping tolerance.

• anorm => ::Real: anorm.

• rnorm => ::Real: rnorm.

• cnorm => ::Real: cnorm.

• resnom => ::Vector: residual norm at each iteration.

PyLinearSolver.IterativeSolvers.minres(A, b, **kwargs)
The function is a wrapper for the julia implementation of MINRES solver in IterativeSolver.jl package. MINRES
is a short-recurrence version of GMRES for solving 𝐴𝑥 = 𝑏 approximately for 𝑥 where 𝐴 is a symmetric,
Hermitian, skew-symmetric or skew-Hermitian linear operator and 𝑏 the right-hand side vector.

Arguments

• A: linear operator.

• b: right-hand side.

Keywords

• initially_zero::Bool = false: if true assumes that iszero(x) so that one matrix-vector product can be saved
when computing the initial residual vector;

• skew_hermitian::Bool = false: if true assumes that A is skew-symmetric or skew-Hermitian;

• tol: tolerance for stopping condition |𝑟𝑘|/|𝑟0|𝑡𝑜𝑙. Note that the residual is computed only approximately;

• maxiter::Int = size(A, 2): maximum number of iterations;

• Pl: left preconditioner;

• Pr: right preconditioner;

• log::Bool = false: keep track of the residual norm in each iteration;

• verbose::Bool = false: print convergence information during the iterations.

10 Chapter 3. PyLinearSolver packages

PyLinearSolver, Release 0.1.1

Output

if log is false

• x: approximate solution.

if log is true

• x: approximate solution;

• history: convergence history.

PyLinearSolver.IterativeSolvers.sor(A, b, w, **kwargs)
The function is a wrapper for the julia implementation of Successive over-relaxation (SOR) solver in Iterative-
Solver.jl package.

Arguments

• w: relaxation parameter

Keywords

• maxiter::Int = 10: maximum number of iterations.

PyLinearSolver.IterativeSolvers.ssor(A, b, w, **kwargs)
The function is a wrapper for the julia implementation of Symmetric successive over-relaxation (SSOR) solver
in IterativeSolver.jl package.

Arguments

• w: relaxation parameter

Keywords

• maxiter::Int = 10: maximum number of iterations.

3.1. IterativeSolvers 11

PyLinearSolver, Release 0.1.1

12 Chapter 3. PyLinearSolver packages

CHAPTER 4

Examples

4.1 Iterative Solvers

An example for Iterative Solver Wrapper package in PyLinearSolver:

from PyLinearSolver import IterativeSolvers
import numpy as np

n=10
A = np.random.rand(n,n)
b= np.random.rand(n)
x= np.zeros(n)
A = A + A.T +2*n*np.identity(n)

x, ch=IterativeSolvers.cg(A,b,verbose=True, log=True)

13

PyLinearSolver, Release 0.1.1

14 Chapter 4. Examples

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

15

PyLinearSolver, Release 0.1.1

16 Chapter 5. Indices and tables

Python Module Index

p
PyLinearSolver.IterativeSolvers, 5

17

PyLinearSolver, Release 0.1.1

18 Python Module Index

Index

B
bicgstabl() (in module PyLinear-

Solver.IterativeSolvers), 5

C
cg() (in module PyLinearSolver.IterativeSolvers), 5
chebyshev() (in module PyLinear-

Solver.IterativeSolvers), 6

G
gauss_seidel() (in module PyLinear-

Solver.IterativeSolvers), 7
gmres() (in module PyLinearSolver.IterativeSolvers), 7

I
idrs() (in module PyLinearSolver.IterativeSolvers), 8

J
jacobi() (in module PyLinearSolver.IterativeSolvers),

8

L
lsmr() (in module PyLinearSolver.IterativeSolvers), 8
lsqr() (in module PyLinearSolver.IterativeSolvers), 9

M
minres() (in module PyLinearSolver.IterativeSolvers),

10

P
PyLinearSolver.IterativeSolvers (module),

5

S
sor() (in module PyLinearSolver.IterativeSolvers), 11
ssor() (in module PyLinearSolver.IterativeSolvers), 11

19

	About the Package
	Installation
	Dependencies
	PyLinearSolver

	PyLinearSolver packages
	IterativeSolvers

	Examples
	Iterative Solvers

	Indices and tables
	Python Module Index
	Index

